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ABSTRACT. Given a metric space X and a Banach space (E, ‖·‖) we use an index of σ-
fragmentability for maps f ∈ EX to estimate the distance of f to the space B1(X, E) of
Baire one functions from X into (E, ‖·‖). When X is Polish we use our estimations for
these distances to give a quantitative version of the well known Rosenthal’s result stating
that in B1(X, R) the pointwise relatively countably compact sets are pointwise compact.
We also obtain a quantitative version of a Srivatsa’s result that states that whenever X is
metric any weakly continuous function f ∈ EX belongs to B1(X, E): our result here
says that for an arbitrary f ∈ EX we have

d(f, B1(X, E)) ≤ 2 sup
x∗∈BE∗

osc(x∗ ◦ f),

where osc(x∗ ◦ f) stands for the supremum of the oscillations of x∗ ◦ f at all points
x ∈ X . As a consequence of the above we prove that for functions in two variables
f : X×K → R, X complete metric and K compact, there exists a Gδ-dense set D ⊂ X
such that the oscillation of f at each (x, k) ∈ D×K is bounded by the oscillations of the
partial functions fx and fk. A representative result in this direction, that we prove using
games, is the following: if X is a σ-β-unfavorable space and K is a compact space, then
there exists a dense Gδ-subset D of X such that, for each (y, k) ∈ D ×K,

osc(f, (y, k)) ≤ 6 sup
x∈X

osc(fx) + 8 sup
k∈K

osc(fk).

When the right hand side of the above inequality is zero we are dealing with separately
continuous functions f : X × K → R and we obtain as a particular case some well-
known results obtained by the third named author in the mid 1970’s.

1. INTRODUCTION

Many results in mathematics are qualitative and some other results are of quantitative
nature. For example, one consequence of Hahn-Banach theorem is that, in a locally convex
space E a compact convex set A disjoint from a closed convex set B can be separated
by an element x∗ of the dual E∗. Although we might think of this result as a result of
qualitative nature, we know that its true power is behind its quantitative disguise: in the
above situation x∗ ∈ E∗ can be chosen to satisfy

sup
a∈A

x∗(a) ≤ α < α + ε ≤ inf
b∈B

x∗(b),

for some α ∈ R and ε > 0.
Recently several quantitative counterparts for classical results such as Krein-Šmulian,

Eberlein-Šmulian, Grothendieck, etc., have been proved. They strengthen the original
theorems and lead to new problems and applications in topology and analysis. See, for
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instance, [1, 4, 8, 9, 10, 11, 12]. This paper goes along the same line, and it is organized
as follows.

In Section 2 we use the concept of σ-fragmented maps to give a distance between a
given function on a metric space (or more generally a perfectly paracompact space) X
into a Banach space E to the space B1(X, E). Our Theorem 2.5 properly extends a result
in [11].

In Section 3 we use the results of the previous section to study compactness relative
to B1(X). Proposition 3.1 and its Corollary represent a quantitative version of the cele-
brated Rosenthal’s result that in B1(X) the pointwise relatively countably compact sets
are pointwise compact when X is Polish.

Section 4 is a technical bridge to Section 5 where we offer, in Theorem 4.1, a quanti-
tative version of the following Mazur’s result: Suppose X is a countably compact space
and (fn)n is a uniformly bounded sequence of continuous functions defined on X con-
verging pointwise to a continuous function f . Then there exists a sequence (gn)n in
conv{fn : n ∈ N} that is ‖ · ‖∞-convergent to f .

In Section 5 we use Theorem 4.1 to establish that for a function F : X → RK (X
metric space and K a compact) we have

d(F,B1(X, C(K))) ≤ 3
2

sup
x∈X

osc((F (x)) + 2 sup
k∈K

osc(πk ◦ F )

where πk is the map : C(K) → R given by h 7→ h(x). As application of the above we
obtain the quantitative version of Srivatsa’s result as presented in the abstract, its relative
Corollary 5.3 and a first Namioka’s type result, Corollary 5.7, that states that if X is a
complete metric space, K is a compact space and f : X ×K → R is any function, then
there exists a dense Gδ set D ⊂ X such that for every (x, k) ∈ D ×K

osc(f, (x, k)) ≤ 7 sup
x∈X

osc(fx) + 8 sup
k∈K

osc(fk). (QN)

Section 6, and last one, is devoted to prove that using topological games inequality
(QN) can be extended to a wider class of spaces X and also sharpened. Indeed, amongst
other things we prove that (QN) still holds for σ-β-unfavorable spaces X and that the
coefficient 7 in (QN) can be replaced by 6, see Theorem 6.1. Furthermore, if we add the
hypothesis that X is normal, then even the second coefficient 8 in (QN) can be replaced
by 7, see Corollary 6.3. Finally, we prove (QN)-type results with better coefficients when
X is a Baire space and K belongs to a certain class of compact spaces (including Corson
and even Valdivia compact spaces) defined by a topological game, see Theorem 6.9 and
their corollaries.

Notation and terminology: We denote by letters T,X, Y, . . . sets or completely regular
topological spaces, and (Z, d) (or simply Z if d is tacitly assumed) is a metric space . The
space ZX is equipped with the product topology τp. In ZX we also consider the standard
supremum metric, which is also (abusively) denoted by d and allowed to take the value
+∞, i.e.,

d(f, g) = sup{d(f(x), g(x)) : x ∈ X}
for functions f, g : X → Z. It is always possible to replace the original metric d in (Z, d)
by a bounded one without changing the uniform structure of Z and thus providing us with
a real-valued uniform metric on ZX ; nonetheless we prefer to use the original metric of
(Z, d) with the usual arithmetical convention for [0,+∞]. We let C(X, Z) denote the
space of all Z-valued continuous functions on X , and let B1(X, Z) denote the space of
all Z-valued functions of the first Baire class (Baire one functions), i.e. pointwise limits
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of Z-valued continuous functions. When Z = R, we write, as usual, C(X) and B1(X)
for C(X, R) and B1(X, R) respectively.

For non-empty subsets A and B of a metric space (Z, d), we consider the usual distance
between A and B given by

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},

and the Hausdorff non-symmetrized distance from A to B defined by

d̂(A,B) = sup{d(a,B) : a ∈ A}.

If ∅ 6= A ⊂ Z we write diam(A) := sup{d(x, y) : x, y ∈ A}. In this paper (E, ‖·‖) is
a Banach space (or simply E if ‖·‖ is tacitly assumed). Finally, BE stands for the closed
unit ball in E, E∗ for the dual space of E and E∗∗ for the bidual space of E; w is the weak
topology of a Banach space and w∗ is the weak∗ topology in the dual.

2. INDEX OF σ-FRAGMENTABILITY AND DISTANCE TO B1(X, E)

Recall that for a given ε > 0, a metric space-valued function f : X → (Z, d) is ε-
fragmented if for each non-empty subset F ⊂ X there exists an open subset U ⊂ X
such that U ∩ F 6= ∅ and diam(f(U ∩ F )) ≤ ε. Given ε > 0, we say that f is ε-σ-
fragmented by closed sets if there is a countable closed covering (Xn)n of X such that
f |Xn is ε-fragmented for each n ∈ N.

If U is open in X and A ⊂ X , then U ∩A 6= ∅ if and only if U ∩A 6= ∅; it follows that
the function f is ε-fragmented if for each closed set F ⊂ X there exists an open subset
U ⊂ X such that U ∩ F 6= ∅ and diam f(U ∩ F ) ≤ ε.

Definition 1. Let X be a topological space, (Z, d) a metric space and f ∈ ZX a function.
We define:

frag(f) := inf{ε > 0 : f is ε-fragmented},
σ-fragc(f) := inf{ε > 0 : f is ε-σ-fragmented by closed sets},

where by definition, inf ∅ = +∞.

Using the above, the usual notion of (σ-) fragmentability [15, p. 248] can be defined as
follows:

(i) f is fragmented if and only if frag(f) = 0.
(ii) f is σ-fragmented by closed sets if and only if σ-fragc(f) = 0.

Theorem 2.1. Let X be a topological space and (Z, d) a metric space. If f ∈ ZX then
the following inequality holds

σ-fragc(f) ≤ frag(f).

If moreover X is hereditarily Baire, then

σ-fragc(f) = frag(f).

Proof. The inequality follows from the definition. Suppose now that X is hereditarily
Baire. We have to prove that if +∞ > ε > σ-fragc(f), then f is ε-fragmented. Let C
be a closed subset of X . Fix ε > σ-fragc(f). Then there is a sequence (Xn)n of closed
sets covering X such that f|Xn

is ε-fragmented for each n ∈ N. Put Hn = Xn ∩ C.
Then, the sequence of closed sets (Hn)n covers C, and, since C is a Baire space, there
exist an n ∈ N and a open set U ⊂ X such that ∅ 6= U ′ = U ∩ C ⊂ Hn ⊂ Xn. Since
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f |Xn is ε-fragmented, there exists an open subset V of X such that V ∩ U ′ 6= ∅ and
diam f(V ∩ U ′) ≤ ε. Put W = V ∩ U . Then W is an open subset of X and

W ∩ C = V ∩ U ∩ C = V ∩ U ′ 6= ∅.
Hence diam f(W ∩ C) ≤ ε. Therefore f is ε-fragmented. �

A family A of subsets of a topological space X is said to be discrete if each x ∈ X
has a neighborhood in X that intersects at most one member of A. In order to study the
relation between σ-fragc(f) and distances to B1(X, E), we use the following notions.

Definition 2. Let X be a topological space.
(i) An indexed family {Xi : i ∈ I} of subsets of X is said to be discretely σ-

decomposable (d.σ.d) if for each i ∈ I we have Xi =
⋃
{Xi,n : n ∈ N}, where

the family {Xi,n : i ∈ I} is discrete for each n ∈ N.
(ii) An indexed family {Xi : i ∈ I} of subsets of X is said to be a good partition of

X if it is a d.σ.d family of Fσ-subsets of X such that Xi ∩Xj = ∅ if i 6= j and
X =

⋃
i∈I Xi.

Remark 2.2. Let X be a topological space then
(i) If {Xi : i ∈ H} is a good partition of X , and if for each i ∈ I , {Y i

j : j ∈ Ji} is a
good partition relative to the subspace Xi, then it is easy to check that {Y i

j : i ∈
I, j ∈ Ji} is a good partition of X (see [14, Lemma 5]).

(ii) If {Xn : n ∈ N} is a countable cover of X by closed sets and each open subset
of X is a Fσ set, then {Yn : n ∈ N} is a good partition of X where Y1 = X1 and
for n > 1, Yn = Xn\

⋃n−1
m=1 Xm. Note now that any countable partition of sets

is d.σ.d.

The following are the results needed for the proof of Theorem 2.5 in which we use ideas
of [15].

Proposition 2.3 ([15, Proposition 2]). Let X be a metric space and {Gγ : γ < Γ} a
transfinite sequence of open sets covering X . If Fγ = Gγ\

⋃
ξ<γ Gξ, then {Fγ : γ < Γ}

is a good partition of X .

Lemma 1. Let Y be a metric space, E a convex subset of a Banach space, ε > 0 and
f : Y → E an ε-fragmented function. Then there exist a function h : Y → E which is
constant on each set of a good partition of Y such that

‖f(y)− h(y)‖ ≤ ε for all y ∈ Y.

Moreover, if E = R then the h above can chosen to satisfy

‖f(y)− h(y)‖ ≤ ε/2 for all y ∈ Y.

Proof. Since f is ε-fragmented, there exist an ordinal Γ and an open cover {Gγ : γ < Γ}
of Y such that Fγ 6= ∅ and diam f(Fγ) ≤ ε, where F0 = G0 and, for 0 < γ < Γ,
Fγ = Gγ\

⋃
ξ<γ Gξ. By Proposition 2.3, {Fγ : γ < Γ} is a good partition of Y . If

E = R, choose tγ the middle point of conv f(Fγ) and if E 6= R choose tγ an arbitrary
point of f(Fγ) for γ < Γ. Define now h : Y → E by h(y) = tγ if y ∈ Fγ . Clearly h is
a constant function on each set of a good partition of Y that satisfies d(f, h) ≤ ε, and if
E = R, then d(f, h) ≤ ε/2. �

Proposition 2.4 ([15, Proposition 3]). Let X be a metric space and E a convex subset
of a Banach space. If f : X → E is constant on each set of a good partition, then
f ∈ B1(X, E).
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Theorem 2.5. If X is a metric space, E a Banach space and if f ∈ EX then
1
2

σ-fragc(f) ≤ d(f,B1(X, E)) ≤ σ-fragc(f). (2.1)

In the case E = R we have the equality

d(f,B1(X)) =
1
2

σ-fragc(f). (2.2)

Proof. We prove the first inequality in (2.1). If d(f,B1(X, E)) = +∞ the inequality
holds. So suppose that d(f,B1(X, E)) is finite. Fix α > d(f,B1(X, E)) and take g ∈
B1(X, E) with

‖f(x)− g(x)‖ < α, for every x ∈ X. (2.3)
Pick a sequence (gn)n in C(X, E) such that limn gn(x) = g(x) for every x ∈ X . Fix
ε > 0 and for each n ∈ N let us define

Xn :=
⋂

m≥n

{x ∈ X : ‖gn(x)− gm(x)‖ ≤ ε

3
}.

It is clear that each Xn is closed and that X =
⋃

n Xn. On the other hand, for every
x ∈ Xn we have that

‖gn(x)− g(x)‖ ≤ ε

3
. (2.4)

Since gn is continuous, for each a ∈ Xn we can take an open neighborhood Va ⊂ X of a
such that diam gn(Va) < ε

3 . Hence (2.3) and (2.4) allow us to conclude that diam f(Va ∩
Xn) < 2α + ε. This last inequality says that σ-fragc(f) ≤ 2α + ε for every ε > 0. Since
α > d(f,B1(X, E)) is arbitrary we conclude that σ-fragc(f) ≤ 2d(f,B1(X, E)) and
this part of the proof is over.

We prove now the last inequality in (2.1). Since the inequality holds when σ-fragc(f) =
+∞, we can suppose that σ-fragc(f) is finite. Given ε > σ-fragc(f), there exists a
countable closed cover {Xn : n ∈ N} of X such that f |Xn is ε-fragmented. By Remark
2.2 (ii), {Yn : n ∈ N} is a good partition of X , where Y1 = X1, and for n > 1,
Yn = Xn\

⋃n−1
m=1 Xm. By Lemma 1 applied to each Yn, there exists a function gn :

Yn → E that is constant on each set of a good partition of Yn such that if x ∈ Yn then
d(gn(x), f(x)) ≤ ε and d(gn(x), f(x)) ≤ ε/2 if E = R. Define g : X → E as

g(x) = gn(x) if x ∈ Yn.

By Remark 2.2 (i), g is constant on each set of a good partition of X so by Proposition
2.4, g ∈ B1(X, E). Clearly, d(f, h) ≤ ε in general so the second inequality in (2.1) holds,
and if E = R, then we have d(f, h) ≤ ε/2 and the equality (2.2) is proved. �

Combining Theorem 2.5 and Theorem 2.1 we get the following corollary.

Corollary 2.6. If X is a hereditarily Baire metric space and f ∈ RX , then

d(f,B1(X)) =
1
2

frag(f).

We note that the corollary above extends [11, Proposition 6.4.], where 2.6 is proved
only for X Polish.

Remark 2.7. We stress that according to the references [15] and [14], Proposition 2.3 holds
for a perfectly paracompact space, i.e., a paracompact space for which open sets are Fσ

sets. Therefore, Theorem 2.5 and its corollary are also true when ‘metric’ is replaced by
‘perfectly paracompact’ .
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3. QUANTITATIVE DIFFERENCE BETWEEN COUNTABLE COMPACTNESS AND
COMPACTNESS IN B1(X, E)

We use the following notation in this section. Let T be a topological space. For a subset
A of T , AN is considered as the set of all sequences in A and the set of all cluster points in
T of a sequence ϕ ∈ AN is denoted by clust (ϕ). Recall that clust (ϕ) is a closed subset
of T and it can be expressed as

clust (ϕ) =
⋂
n∈N

{ϕ(m) : m ≥ n}.

Proposition 3.1. Let X be a separable metric space, (Z, d) a metric space and H a
pointwise relatively compact subset of (ZX , τp). Then (closures are taken relative to τp),

sup
f∈H

frag(f) = sup
ϕ∈HN

inf{frag(f) : f ∈ clust (ϕ)}. (3.1)

Proof. Let α be the right hand side of (3.1). Clearly

β := sup
f∈H

frag(f) ≥ α.

If β = 0 we are done. Otherwise, the equality (3.1) will be established if we prove that
each time β > ε > 0 we also have α ≥ ε. Assume β > ε > 0 and pick f ∈ H such that
frag(f) > ε. Then there exists a non-empty subset F ⊂ X such that diam f(F ∩U) > ε
for each open set U ⊂ X with U ∩ F 6= ∅. Let us fix {Un : n ∈ N} a basis for the
topology in X and write B := {n ∈ N : Un ∩ F 6= ∅}. For every n ∈ B we can choose
xn, yn ∈ Un ∩F such that d(f(xn), f(yn)) > ε. Let us write C := {xn : n ∈ B}∪ {yn :
n ∈ B}. Since C ⊂ X is countable and f ∈ H there exists a sequence ϕ ∈ HN such that
limn ϕ(n)(x) = f(x) for every x ∈ C. Therefore, if g is an arbitrary τp-cluster point of
ϕ then g|C = f |C and in particular we have that

d(g(xn), g(yn)) > ε, for every n ∈ B. (3.2)

If U is an open set such that U ∩ C 6= ∅ then there exist n ∈ N such that ∅ 6= Un ∩ C ⊂
U ∩ F . Hence, n ∈ B and since xn, yn ∈ U ∩ C we conclude

diam g(U ∩ C) ≥ d(g(xn), g(yn))
(3.2)
> ε.

We have proved that
inf{frag(g) : g ∈ clust (ϕ)} ≥ ε

and therefore α ≥ ε so the proof is complete. �

If X is a topological space, (Z, d) a metric space and H a relatively compact subset of
the space (ZX , τp) we define

ck(H) := sup
ϕ∈HN

d(clust (ϕ), B1(X, Z)). (3.3)

Note that if H is a relatively countably compact subset of (B1(X, Z), τp), then ck(H) =
0. Combining Proposition 3.1, Theorem 2.5 and Theorem 2.1, we get the following result.
The particular case of ck(H) = 0 and E = R is the classic result due to Rosenthal [18].

Corollary 3.2. Let X be a Polish space, E a Banach space and H a τp-relatively compact
subset of EX . Then

ck(H) ≤ d̂(HEX

, B1(X, E)) ≤ 2 ck(H).
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In the particular case when E = R we have

d̂(HRX

, B1(X)) = ck(H).

4. A QUANTITATIVE VERSION OF A THEOREM BY MAZUR

In this section, we follow the notation of [21, Section 1.3]. Our goal in this section is
to prove Theorem 4.1 which is used in the proof of Theorem 5.2. N(N) denotes the set of
finite subsets of N.

Definition 3. A convex mean on N is a function µ : N → [0, 1] such that
(i)

∑∞
i=1 µ(i) = 1

(ii) Supp(µ) = {i ∈ N : µ(i) > 0} is finite.
For F ⊂ N, let µ(F ) =

∑
i∈F µ(i). M denote the set of all convex means on N.

Definition 4. Suppose F ⊂ N(N). Then F is well-founded if there is no infinite in-
creasing sequence (ni)i ⊂ N such that for each k ∈ N, there exists Sk ∈ F such that
{n1, . . . , nk} ⊂ Sk.

Lemma 2 (V. Pták, [21, p. 13]). If F is a well-founded family of finite subsets of N, then
for each ε > 0 there is a µ ∈ M, such that µ(F ) < ε for all F ∈ F .

Theorem 4.1 (Quantitative Mazur Theorem). Suppose that X is a countably compact
space, a > 0 and (fn)n ⊂ RX is a uniformly bounded sequence such that for each x ∈ X
there exists an nx such that

if n > nx, then |fn(x)− f(x)| ≤ a,

(i.e. |fn(x)− f(x)| ≤ a eventually in n). If we suppose that

d = sup{d(fn − f, C(X)) : n ∈ N} < +∞,

then for each ε > 0, there exists g ∈ conv{fn : n ∈ N} such that

‖g − f‖∞ < 2d + a + ε.

Proof. Without loss of generality, we may assume that f = 0. For each x ∈ X define

Fx = {n ∈ N : |fn(x)| ≥ 2d + a + ε/2}.
Since there exist nx such that whenever n > nx, |fn(x)| ≤ a, we obtain that Fx is finite.
Put F = {Fx : x ∈ X}. We show that F is well-founded. Suppose this is not the case.
Then there is an infinite increasing sequence (ni)i in N so that for each k ∈ N, there exists
an xk ∈ X such that {n1, . . . , nk} ⊂ Fxk

. Since X is countably compact, (xk)k must
have a cluster point, say x∞. Now fix k ∈ N. Then for j ≥ k, nk ∈ Fxj . Hence for all
j ≥ k, |fnk

(xj)| ≥ 2d+a+ ε/2. Since d(fnk
, C(X)) ≤ d, there exists a g ∈ C(X) such

that d(fnk
, g) < d + ε/8. Hence for each j ≥ k,

2d + a + ε/2 ≤ |fnk
(xj)| ≤ |fnk

(xj)− g(xj)|+ |g(xj)− g(x∞)|
+ |g(x∞)− fnk

(x∞)|+ |fnk
(x∞)|

≤ |fnk
(x∞)|+ 2d + ε/4 + |g(xj)− g(x∞)|;

thus
a + ε/4 ≤ |fnk

(x∞)|+ |g(xj)− g(x∞)|.
Since g is continuous and x∞ is an accumulation point of (xj)j , |g(xj) − g(x∞)| can be
made arbitrarily small. Therefore, a + ε/4 ≤ |fnk

(x∞)| and this is true for each k ∈ N,
contradicting the assumption that |fn(x∞)| ≤ a eventually as n goes to +∞. We have
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proved that F is well-founded and then we may apply Pták Lemma to F , so there is a
µ ∈ M such that µ(Fx) < ε/(3N) for each x ∈ X , where N is a uniform bound on (fn).
Choose k ∈ N such that Supp(µ) ⊂ {1, 2, . . . , k}. Let λi = µ(i) for 1 ≤ i ≤ k. Then∑k

i=1 λi = 1. Let x ∈ X . Then for i /∈ Fx, |fi(x)| < 2d + a + ε/2. This yields:∣∣∣∣∣
k∑

i=1

λifi(x)

∣∣∣∣∣ ≤ ∑
i∈Fx∩{1,...,k}

|λifi(x)|+
∑

i∈{1,...,k}\Fx

|λifi(x)|

≤ N
∑

i∈Fx∩{1,...,k}

λi +
∑

i∈{1,...,k}\Fx

λi(2d + a +
ε

2
)

≤ Nµ(Fx) + 2d + a +
ε

2
≤ N

ε

3N
+ 2d + a +

ε

2
= 2d + a +

5
6
ε.

Hence ‖
∑k

i=1 λifi‖∞ < 2d + a + ε as required. �

Corollary 4.2 (Mazur). Suppose X is a countably compact space and (fn)n is a uni-
formly bounded sequence of continuous functions defined on X pointwise convergent to a
continuous function f . Then there exists a sequence (gn)n in conv{fn : n ∈ N} that is
‖ · ‖∞-convergent to f .

5. DISTANCES TO BAIRE ONE FUNCTIONS AND OSCILLATIONS OF MAPS IN TWO
VARIABLES

For a function f : X×Y :→ R, let fx : Y → R and fy : X → R be the functions given
by fx(y) = f(x, y) = fy(x) for each (x, y) ∈ X×Y . To the function f , we also associate
the function F : X → RY given by F (x) = fx for each x ∈ X . When we speak of
oscillations of F , they are computed with respect to the uniform metric on RY as discussed
in the Introduction. In the following, we recall the relationship between the oscillation of
a function and its distance from the continuous ones. In the cited reference, the theorem
is stated under more restricted conditions: X is paracompact and f is uniformly bounded
on X . The proof in the reference has two parts, (i) and (ii). For the first part (i), one can
find an outline of the proof for our case when X is normal in Engelking [7, Exercise 1.7.5
(b)]. The second part (ii) does not require f to be uniformly bounded.

Theorem 5.1 ([2, Proposition 1.18]). Let X be a normal space. If f ∈ RX , then

d(f, C(X)) =
1
2

osc(f)

where

osc(f) = sup
x∈X

osc(f, x) = sup
x∈X

inf{diam f(U) : U ⊂ X open, x ∈ U}.

The following is the main result of this section. Its proof relies on the terms and results
given in Section 2. In addition, we need the following general facts which are easy to
verify.
Fact (i) Let U be a discrete family of open subsets of a topological space X , and for each

U ∈ U , let CU be a relatively closed subset of U . Then D :=
⋃
{CU : U ∈ U}

is closed in X and
⋃
{CU : U ∈ U} = D ∩

⋃
U .

Fact (ii) Let Gδ (resp. Fσ) be the family of all Gδ (resp. Fσ) subsets of the space X . Then
the intersection Gδ ∩ Fσ is an algebra of subsets of X .
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Theorem 5.2. Let X be a metric space, K a compact space and F : X → RK a function.
Then

d(F,B1(X, C(K))) ≤ 3
2

sup
x∈X

osc(F (x)) + 2 sup
k∈K

osc(πk ◦ F ), (5.1)

where, for F, F ′ : X → Rk, d(F, F ′) = sup{|F (x)(k) − F ′(x)(k)| : (x, k) ∈ X ×K}
and the map πk : C(K) → R is given by h → h(k).

Proof. Obviously we may assume that the right hand side in (5.1) is finite.

Let a > supx∈X osc(F (x)) and b > b′ > supk∈K osc(πk ◦ F ).
We first reduce the general case to the case where the image of the map F is uniformly

bounded in RX .
By Theorem 5.1 for each k there exists jk ∈ C(X) such that d(πk ◦ F, jk) < b/2.

Define now the map J : X → RK by J(x)(k) = jk(x). Clearly J is continuous relative
to τp and d(F, J) ≤ b/2. For each x ∈ X, osc F (x) is finite that is F (x) is a locally
bounded function on K. Since K is compact, it follows that F (x) ∈ `∞(X). Hence
J(x) ∈ `∞(K) also. Let Pn = {x ∈ X : ‖J(x)‖∞ ≤ n} and Qn = Pn \ Pn−1, P0 = ∅.
Then each Pn is closed in X and {Qn : n ∈ N} is a good partition of X by Remark
2.2(ii). Since J(Qn) is bounded in `∞(K), F (Qn) is also bounded in `∞(K) for each
n ∈ N. Suppose for each n ∈ N we can find a function Hn on Qn which is constant
on each set of a good partition of Qn and d(F |Qn − Hn) ≤ 3a/2 + 2b. Then let H be
the function given by H(x) = Hn(x) whenever x ∈ Qn. By Remark 2.2, H is constant
on each set of a good partition of X . Hence by Proposition 2.4, H ∈ B1(X, C(K)) and
‖F − H‖∞ ≤ 3a/2 + 2b. This finishes the proof. Therefore from now we assume that
F (X) is bounded in `∞(K).

For each x ∈ X , by Theorem 5.1, there exists a function gx ∈ C(K) with ‖F (x) −
gx‖∞ < a/2. Define the map G : X → C(K) by G(x) = gx. Then for each (x, k) ∈
X ×K, |F (x)(k)−G(x)(k)| ≤ a/2.

Since X is metric, there is a σ-discrete base U for the topology of X , i.e. U =
⋃
{Un :

n ∈ N} where each Un is a discrete family of non-empty open subsets of X . For each
U ∈ U , choose xU ∈ U . For each n we define the function Gn :

⋃
Un → C(K) by

Gn(x) = G(xU ) for x ∈ U ∈ Un. Then the domain of Gn is
⋃
Un.

Now fix x ∈ X . Then for each p ∈ N, there is an np ∈ N such that, for some
Up ∈ Unp , x ∈ Up ⊂ B(x; 1/p). For each k ∈ K, osc πk ◦ F < b′, and hence there is a
pk ∈ N such that diam(πk ◦ F (B(x; 1/pk))) < b′. If p > p(k), since Up ⊂ B(x; 1/p),

diam(πk ◦ F (Up)) ≤ diam πk ◦ F (B(x; 1/p))) ≤ diam(πk ◦ F (B(x; 1/pk))) < b′.

Furthermore because x, xUp ∈ Up, we have

|Gnp(x)(k)− F (x)(k)| = |G(xUp)(k)− F (x)(k)| ≤
≤ |G(xUp)(k)− F (xUp)(k)|+ |F (xUp)(k)− F (x)(k)| < a/2 + b′.

This shows that for each k ∈ K, |Gnp(x)(k) − F (x)(k)| < a/2 + b′ eventually for p.
Since osc(Gnp(x)−F (x)) = osc F (x) < a, d(Gnp(x)−F (x), C(K)) < a/2. It follows
from Theorem 4.1 that there is a rational convex combination, say H , of {Gnp : p ∈ N}
such that ‖H(x) − F (x)‖∞ < 3a/2 + b. Let {Hm : m ∈ N} be an enumeration of all
rational convex combinations of {Gn : n ∈ N}. Then, as seen above, for each x ∈ X
there exists an m ∈ N such that ‖Hm(x)− F (x)‖∞ ≤ 3a/2 + b. For m ∈ N, let

Am = {x ∈ X : Hm(x) is defined and ‖Hm(x)− F (x)‖∞ ≤ 3a/2 + b}.
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Then
⋃
{Am : m ∈ N} = X . Let Vm be a discrete family of non-empty open sets such

that
⋃
Vm = dom(Hm) and such that Hm is constant on V for each V ∈ Vm. Denote

hV
m ∈ C(K) the constant value of Hm on V . Then

Am =
⋃
{V ∩ {x : ‖F (x)− hV

m‖∞ ≤ 3a/2 + b} : V ∈ Vm}.

Put now

Bm =
⋃
{V ∩ {x : ‖F (x)− hV

m‖∞ ≤ 3a/2 + b} : V ∈ Vm}.

Since Vm is discrete family of open sets in X , Bm is the intersection of a closed set and
an open set in X by Fact (i) above. It follows that Bm ∈ Gδ ∩ Fσ because X is metric.

Finally, define L : X → `∞(K) by

L(x) = Hm(x) if x ∈ Cm = Bm\
⋃

k<m

Bk.

By Fact (ii) each Cm is a Fσ set. Hence {Cm : m ∈ N} is a good partition by Remark
2.2(ii). Note that relative to Cm, Cm is the union of the discrete family {V ∩ Cm : V ∈
Vm} of open (hence Fσ) subsets and Hm is C(K)-valued and constant on each V ∩ Cm.
Hence by Remark 2.2(i), L is C(K)-valued and constant on each set of a good partition
of X . Therefore by Proposition 2.4, L ∈ B1(X, C(K)).

Now we have to prove that ‖L − F‖∞ ≤ 3a/2 + 2b. For this, we only have to prove
that if

x0 ∈ {x : ‖F (x)− hV
m‖∞ ≤ 3a/2 + b}, (5.2)

then ‖F (x0)− hV
m‖∞ ≤ 3a/2 + 2b.

Fix k ∈ K. Since osc(πk ◦F ) < b, there exist an open neighborhood U0 of x0 such that
diam(πk ◦F (U0)) < b. By (5.2), there exist x ∈ U0 such that ‖F (x)−hV

m‖∞ ≤ 3a/2+b
so

|F (x0)(k)− hV
m(k)| ≤ |F (x0)(k)− F (x)(k)|+

+|F (x)(k) + hV
m(k)| ≤ b + 3a/2 + b = 3a/2 + 2b.

Since it is true for all k ∈ K, ‖F (x0)− hV
m‖∞ ≤ 3a/2 + 2b. �

In particular, if E is a Banach space and K = (BE∗ , w∗), we get the following result.

Corollary 5.3. Let X be a metric space, E a Banach space and F : X → E∗∗ a function,
then

d(F,B1(X, E)) ≤ (3/2) sup
x∈X

osc(F (x)) + 2 sup
x∗∈BE∗

osc(x∗ ◦ F ),

where F (x) is considered a function on (BE∗ , w∗).

Proof. In the proof of the Theorem 5.2, if K = (BE∗ , w∗), by [4, Corollary 4.2] we can
choose gx ∈ E, and so if we follow this proof, we get that

d(F,B1(X, E)) ≤ (3/2) sup
x∈X

osc(F (x)) + 2 sup
x∗∈BE∗

osc(x∗ ◦ F ).

�

Corollary 5.4. Let X be a metric space, E a Banach space and F : X → E a function,
then

d(F,B1(X, E)) ≤ 2 sup
x∗∈BE∗

osc(x∗ ◦ F ).

Theorem 5.2 and its Corollaries 5.3 and 5.4 are extensions of the following result.
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Corollary 5.5 (Srivatsa, [20]). Let X be a metric space, E a Banach space and K a
compact space. Then:

(i) If F : X → (C(K), τp), then F is Baire one.
(ii) If F : X → (E,weak) is continuous, then F is Baire one.

Corollary 5.6. Let X be a complete metric space, K a compact space and f : X×K → R
a function. Then there exist a dense Gδ set D ⊂ X such that for each x ∈ D

osc(F, x) ≤ 3 sup
x∈X

osc(fx) + 4 sup
k∈K

osc(fk)

where F : X → RK is the function defined by F (x) = fx.

Proof. Put a = (3/2) supx∈X osc(fx)+2 supk∈K osc(fk) and suppose that a < +∞. By
Theorem 5.2, d(F,B1(X, C(K))) ≤ a. Fix ε > 0, then there exists G ∈ B1(X, C(K))
such that ‖F − G‖∞ < a + ε/4. Since X is a Baire space, there exist a dense Gδ set
Dε ⊂ X such that G is continuous at x for all x ∈ Dε. Now we fix x ∈ Dε. Then we can
find a neighborhood U of x such that diam G(U) < ε/2, and hence if y, z ∈ U ,

‖F (y)−F (z)‖∞ ≤
≤ ‖F (y)−G(y)‖∞ + ‖G(y)−G(z)‖∞ + ‖G(z)− F (z)‖∞ <

< a +
ε

4
+

ε

2
+ a +

ε

4
= 2a + ε.

Therefore osc(F, x) ≤ 2a + ε. Now let D =
⋂
{D1/n : n ∈ N}. Then D is still a dense

Gδ subset of X , and for each x ∈ D osc(F, x) ≤ 2a. �

Lemma 3. Let X be a topological space, K a compact space and f : X × K → R a
function. Then for x ∈ X ,

osc(F, x) ≤ sup
k∈K

osc(f, (x, k)) ≤ 2 osc(F, x) + osc(fx),

where F : X → RK is the function defined by F (y) = fy for each y ∈ X .

Proof. Let us prove the first inequality. Suppose that a = supk∈K osc(f, (x, k)) is finite
and fix ε > a. Then for each k ∈ K, there exist an open neighborhood Uk of x and Vk of
k such that diam f(Uk × Vk) < ε. Since {Vk : k ∈ K} is an open cover of the compact
space K, there exist k1, k2, . . . , kn such that the family {Vki

: 1 ≤ i ≤ n} covers K. Put
U =

⋂n
i=1 Uki

. Then U is an open neighborhood of x. Choose x′, x′′ ∈ U and k ∈ K.
Then there exists an i ∈ {1, . . . , n} such that k ∈ Vki

. Since (x′, k), (x′′, k) ∈ Uki
× Vki

and diam f(Uki
× Vki

) < ε then

|f(x′, k)− f(x′′, k)| < ε

and since we can do it for all k ∈ K then

d(F (x′), F (x′′)) ≤ ε

so osc(F, x) ≤ ε and since we can do it with each ε > a the first inequality is proved.
For the second inequality, suppose that osc(F, x) and osc(fx) are finite and choose

ε > osc(F, x) and δ > osc(fx). Fix k ∈ K, we have to prove that osc(f, (x, k)) ≤ 2ε+δ.
Since osc(F, x) < ε there exist a neighborhood U of x such that d(fx, fy) < ε for each
y ∈ U . Since osc(fx) < δ, there exist a neighborhood V of k such that diam fx(V ) < δ.
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Then, for (x′, k′), (x′′, k′′) ∈ U × V

|f(x′, k′)− f(x′′, k′′)| ≤ |f(x′, k′)− f(x, k′)|+ |f(x, k′)− f(x, k′′)|+
+ |f(x, k′′)− f(x′′, k′′)| <
< ε + δ + ε = 2ε + δ

and then osc(f, (x, k)) ≤ 2ε + δ. �

Corollary 5.7. Let X be a complete metric space, K a compact space and f : X×K → R
a function. Then there exists a dense Gδ set D ⊂ X such that for each (y, k) ∈ D ×K

osc(f, (y, k)) ≤ 7 sup
x∈X

osc(fx) + 8 sup
k∈K

osc(fk).

Proof. Apply Corollary 5.6 and Lemma 3. �

Corollary 5.8 ([17]). Let X be a complete metric space, K a compact space and f :
X × K → R a separately continuous function. Then there exist a dense Gδ set D ⊂ X
such that f is continuous in each (x, k) ∈ D ×K.

6. GAMES AND OSCILLATION OF MAPS IN TWO VARIABLES

Corollary 5.8 of the previous section is an answer to a more general question of the fol-
lowing type: For what Baire space X and compact space K, does the following statement
N(X, K) hold?

N(X, K): If f : X ×K → R is separately continuous, i .e. fx and
fk are continuous for each (x, k) ∈ X ×K, then for some dense Gδ

subset D of X , the function f is continuous (relative to the product
topology) at each point (x, k) ∈ D ×K.

A Baire space X is said to have propertyN if N(X, K) holds for each compact Hausdorff
space K, and similarly a compact space K is said to have property N ∗ if N(X, K) holds
for each Baire space X . Corollary 5.8 says that complete metric spaces have property
N , and Corollary 5.7 is a quantitative version of N . We know, for instance, countable
Čech-complete (= strongly countably complete) spaces (defined below) have the property
N [17] and Valdivia-compact spaces have the propertyN ∗ [6]. In this section we examine
quantitative versions of properties N and N ∗ for even larger classes of spaces with N
or N ∗. These spaces are defined in terms of topological games. Therefore we begin the
section with the topological games. All games are infinite games for two players, α and
β, and each moves alternatively. The board is a topological space X . The Banach-Mazur
game G(X) in X is played as follows: First β chooses a non-empty open set U0 in X (β’s
0-th move). Then α chooses a non-empty open subset V0 of U0 (α’s 0-th move). Then the
first move by β is a non-empty open subset U1 of V0 followed by α’s first move V1 ⊂ U1,
and so on. Inductively the player β’s n-th move is a non-empty open set Un ⊂ Vn−1

followed by α’s n-th move: non-empty open set Vn ⊂ Un. The player α is said to win the
game if

⋂
{Vn : n ∈ N} =

⋂
{Un : n ∈ N} 6= ∅. Otherwise β wins the game.

A strategy s for α in the game G(X) is a rule which determines α’s move at each
stage based on the game played so far following the strategy. Thus at the n-th stage,
α’s move Vn is given as Vn = s(U0, U1, ..., Un), where Ui+1 ⊂ s(U0, U1, ..., Ui) for
i ∈ {0, 1, ..., n − 1}. The strategy s is called a winning strategy if α wins whenever it
uses the strategy s. A strategy for β is similarly defined by switching the sides. If α has a
winning strategy in the game G(X), then the space X is said to be α-favorable. If β does
not have a winning strategy, then X is said to be β-unfavorable. Krom in [16] and Saint
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Raymond in [19] have shown independently that a topological space X is a Baire space
if and only if X is β-unfavorable.

We now consider a modification Gσ(X), due to Christensen [5], of the Banach-Mazur
game. As before the players α and β move alternatively beginning with β. The moves for
β are the same as before: at the n-th stage, β’s move is a non-empty open Un ⊂ Vn−1.
Then α’s n-th move is a pair (Vn, xn) where Vn is a non-empty open subset of Un and
xn ∈ X . The player α wins the game Gσ(X) if

⋂
{Vn : n ∈ N} =

⋂
{Un : n ∈ N}

contains a cluster point of the sequence (xn)n. A strategy in the game Gσ(X) is defined
analogously as in the game G(X). A space X is said to be σ-β-unfavorable if the player
β does not have a winning strategy in Gσ(X). From the result cited in the last paragraph,
it is clear that σ-β-unfavorable spaces are Baire spaces. Generalizing a Christensen’s
result, Saint Raymond [19] proved the following theorem in the case supx∈x osc(fx) = 0
and supk∈K osc(fk) = 0. Later Bouziad [3] gave it a short and elegant proof. Our proof
below uses Bouziad’s ideas.

Theorem 6.1. Let f : X ×K → R be a map, where X is a σ-β-unfavorable space and
K is a compact space. Then there exists a dense Gδ-subset D of X such that, for each
(y, k) ∈ D ×K,

osc(f, (y, k)) ≤ 6 sup
x∈X

osc(fx) + 8 sup
k∈K

osc(fk).

Proof. Let b = supk∈K osc(fk), c = supx∈X osc(fx) and let r = 6c + 8b. We may
assume that r is finite, otherwise the assertion is trivially true. For n ∈ N, let

An = {x ∈ X : osc(f, (x, k)) < r + 1/n for each k ∈ K}.

Since oscillation is upper semicontinuous and K compact, An is open.
We show each An is dense in X by contradiction. So suppose for some p ∈ N, Ap 6= X .

We now define a strategy s for β for the game Gσ(X). First let U0 := s(∅) = X \ Ap.
Inductively, suppose (V0, a0), (V1, a1), ..., (Vn−1, an−1) have been played by α. We must
define β’s response

Un := s((V0, a0), (V1, a1), ..., (Vn−1, an−1)).

First choose an xn ∈ Vn−1. Since xn 6∈ Ap, there exists a kn ∈ K such that

osc(f, (xn, kn)) ≥ r + 1/p. (6.1)

Choose an open subset On of X such that xn ∈ On ⊂ Vn−1 and

diam f(On, kn) < b + 1/n. (6.2)

For each x ∈ X , since osc fx ≤ c, Theorem 5.1 allows us to pick gx ∈ C(K) such that
‖fx − gx‖∞ < c/2 + 1/(36p). Now define the map g : X ×K → R by g(x, k) = gx(k).
Clearly

|f(x, k)− g(x, k)| < c/2 + 1/(36p) for (x, k) ∈ X ×K. (6.3)

Next we let

Wn = {k ∈ K : |g(ai, kn)− g(ai, k)| < 1/n for i = 0, 1, ..., n− 1}. (6.4)

Since gai is continuous for i = 0, 1, ..., n − 1, Wn is an open neighborhood of kn in K.
By (6.1), there is a point (x′n, k′n) ∈ On ×Wn such that

|f(xn, kn)− f(x′n, k′n)| > r/2 + 1/(3p). (6.5)
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For, otherwise osc(f, (xn, kn)) ≤ r + 2/(3p). Choose an open set Un in X such that
x′n ∈ Un ⊂ On and

diam f(Un, k′n) < b + 1/n. (6.6)

This Un is the n-th move of β. Since the space X is σ-β-unfavorable, the strategy s for
β above is not a winning one. Thus there is a winning play for α against β’s strategy
s. Let (V0, a0), (V1, a1), ..., (Vn, an), ... be such a play for α. Then the sequence (an)n

has a cluster point a ∈
⋂∞

n=0 Un. Also let (k∞, k′∞) be a cluster point of the sequence
(kn, k′n)n.

Since k′n ∈ Wn, by (6.4) we have

|g(ai, kn)− g(ai, k
′
n)| < 1/n for 0 ≤ i < n

and then, since gai is continuous

g(ai, k∞) = g(ai, k
′
∞) for each i ∈ N. (6.7)

By (6.5)

r/2 + 1/(3p) < |f(xn, kn)− f(x′n, k′n)| ≤
≤ |f(xn, kn)− f(a, kn)|+ |f(a, kn)− f(a, k′n)|+
+ |f(a, k′n)− f(x′n, k′n)|.

Since xn, a ∈ On and x′n, a ∈ Un, by (6.2) and (6.6) the first and the third terms of the
last member of the last inequality are less than b + 1/n. Consequently we have

r/2 + 1/(3p) < |f(a, kn)− f(a, k′n)|+ 2b + 2/n <

< |g(a, kn)− g(a, k′n)|+ c + 1/(18p) + 2b + 2/n

for each n. Here, in the last inequality, we have used (6.3). Since ga is continuous, it
follows that

r/2 + 1/(3p) ≤ c + 1/(18p) + 2b + |g(a, k∞)− g(a, k′∞)|. (6.8)

By our definition of b, there is an open neighborhood G of a in X such that

diam f(G, k∞) < b + 1/(12p) and diam f(G, k′∞) < b + 1/(12p).

Since a is a cluster point of the sequence (an)n, ai ∈ G for some i. Therefore using (6.7)
and (6.3)

|g(a, k∞)− g(a, k′∞)| ≤
≤ |g(a, k∞)− g(ai, k∞)|+ |g(ai, k

′
∞)− g(a, k′∞)| ≤

≤ |f(a, k∞)− f(ai, k∞)|+ |f(ai, k
′
∞)− f(a, k′∞)|+ 2c + 1/(9p) <

< 2c + 2b + 5/(18p).

Combining this inequality with (6.8), we obtain that

r/2 + 1/(3p) < 3c + 4b + 1/(3p),

from which we conclude that r < 6c + 8b, contradicting the definition of r. This proves
that An is dense for each n. Let D =

⋂
{An : n ∈ N}. Then since σ-β-unfavorable

spaces are Baire, D is a dense Gδ subset of X . By the definition of An, it is clear that D
has the stated property. �
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Corollary 6.2. Let X and K be as in the theorem and let F : X → C(K) be a map.
Then there exists a dense Gδ-subset D of X such that, for each x ∈ D,

osc(F, x) ≤ 8 sup
k∈K

osc(πk ◦ F ),

where the map πk : C(K) → R is given by h 7→ h(k).

Proof. Apply the theorem to the map f : X ×K → R defined by f(x, k) = F (x)(k) to
obtain a dense Gδ-subset D of X . The conclusion follows from the inequality: osc(F, x) ≤
supk∈K osc(f, (x, k)), see Lemma 3. �

Corollary 6.3. Let X be a normal σ-β-unfavorable space, let K be a compact space and
let f : X ×K → R be a map. Then there exists a dense Gδ-subset D of X such that, for
each (y, k) ∈ D ×K,

osc(f, (y, k)) ≤ 6 sup
x∈X

osc(fx) + 7 sup
k∈K

osc(fk).

Proof. Let c = supx∈X osc(fx) and b = supk∈K osc(fk) and r > b. We may assume
that b is finite, otherwise the assertion is trivially true. By Theorem 5.1, for each k ∈ K,
there is a gk ∈ C(X) such that ‖fk − gk‖∞ < r/2. Now define the map g : X ×K → R
by g(x, k) = gk(x). Clearly |f(x, k) − g(x, k)| < r/2 for (x, k) ∈ X × K. This
makes oscillations of f, fx, fk and g, gx, gk differ by at most r respectively. Applying
Theorem 6.1 to the map g we get that there exists a Gδ-subset D of X such that, for each
(x, k) ∈ D×K, osc(g, (x, y)) ≤ 6 supx∈X osc(gx)+8 supk∈K osc(gk) ≤ 6(c+r)+8·0.
It follows for such (x, k),

osc(f, (x, k)) ≤ osc(g, (x, k)) + r ≤ 6(c + r) + r = 6c + 7r.

The assertion now follows from this. �

Remark 6.4. Notice that the assumptions of the last corollary and Theorem 6.1 are very
similar. The only difference is that the former assumes the normality of X . This extra
assumption has the effect of improving the conclusion slightly. As we show below, com-
plete metric spaces satisfy the assumptions of Corollary 6.3. So it is a generalization of
our Corollary 5.7 with better estimates. This is the result of our more direct approach of
this section.

Here are examples of σ-β-unfavorable spaces. Separable Baire spaces are σ-β-unfavo-
rable spaces (Saint-Raymond [19]). A completely regular space X is called countably
Čech-complete (or strongly countably complete) if there is a sequence {Un : n ∈ N}
of open coverings of X such that

⋂
{Fn : n ∈ N} 6= ∅ whenever {Fn : n ∈ N} is a

decreasing sequence of closed subsets of X such that Fn is contained in some member
of Un for each n. Christensen [5] has shown that countably Čech-complete are σ-β-
unfavorable. In particular, Čech-complete spaces are σ-β-unfavorable. So locally compact
spaces and complete metric spaces are all σ-β-unfavorable.

In order to state the next theorem, we need one more game. Let Y be a topological
space and let L be a dense subset of Y × Y . The game G(∆, L, Y ) goes as follows. First
the player α chooses an open neighborhood W0 of the diagonal ∆ in Y ×Y and the player
β chooses a point (a0, b0) ∈ W0 ∩ L. At the n-th stage α chooses an open neighborhood
Wn of ∆ and β chooses a point (an, bn) ∈ Wn ∩ L. The player α is said to win the game
if, for each neighborhood W of ∆, (an, bn) ∈ W for infinitely many n’s. For the case
L = Y ×Y , this game is defined and very effectively used by Bouziad [3]. It is a variation
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of the game defined earlier by Gruenhage [13]. If α has a winning strategy in the game
G(∆, L, Y ), then Y is called a G(∆, L)-α-favorable space.

Theorem 6.5. Let X be a Baire space and let K be a compact G(∆, L)-α-favorable
space for some dense subset L of K ×K. Suppose f : X ×K → R is a map such that
fx ∈ C(K) for each x ∈ X . Then there exists a dense Gδ subset D of X such that for
each (x, k) ∈ D ×K,

osc(f, (x, k)) ≤ 6 sup
k∈K

osc(fk).

Proof of the Theorem. We start by isolating the following very technical part of the proof
as a lemma for further comments and use.

Lemma 4. Under the assumptions of Theorem 6.5, if we let b = supk∈K osc(fk) and if
for some r > 0 and p ∈ N,

A = {x ∈ X : osc(f, (x, k)) < r +
1
p

for each k ∈ K}

is not dense, then there exists a sequence (kn, k′n)n in L and a ∈ X such that for each
open neighborhood W of ∆, (kn, k′n) ∈ W for infinitely many n’s and

r/2 + 1/(3p) < 3b + 3/n + |f(a, kn)− f(a, k′n)| for all n ∈ N. (6.9)

Proof of the Lemma. Since oscillation is upper semicontinuous and K compact, A is open.
Suppose that A 6= X . Assume now that α and β play games G(X) and G(∆, L,K) si-
multaneously. Let s be the winning strategy for α in G(∆, L,K), we are going to define a
strategy t for β in G(X) step by step.

So let U0 = t(∅) := X \ A and let (k0, k
′
0) ∈ W0 ∩ L be the 0-th move by β in

the game G(∆, L,K), where W0 = s(∅). Assume that we are at the (n − 1)-th stage.
In the game G(∆, L,K), β’s moves so far are (k0, k

′
0), (k1, k

′
1), ..., (kn−1, k

′
n−1). In the

game G(X), α’s moves so far are V0, V1, ..., Vn−1. We must define β’s n-th move Un =
t(V0, V1, ..., Vn−1).

First choose xn ∈ Vn−1. Since xn 6∈ A, there exists yn ∈ K such that

osc(f, (xn, yn)) ≥ r + 1/p. (6.10)

By definition of b, there is an open set On in X such that xn ∈ On ⊂ Vn−1 and

diam f(On, yn) < b + 1/n. (6.11)

Now Wn := s((k0, k
′
0), (k1, k

′
1), ..., (kn−1, k

′
n−1)) is an open neighborhood of ∆. Define

Gn = {y ∈ K : (yn, y) ∈ Wn}. (6.12)

Then Gn is an open neighborhood of yn in K. By (6.10), there exists (x′n, y′n) ∈ On×Gn

such that
|f(xn, yn)− f(x′n, y′n)| > r/2 + 1/(3p). (6.13)

Since xn, x′n ∈ On, we have by (6.11)

|f(xn, yn)− f(x′n, yn)| < b + 1/n. (6.14)

Since y′n ∈ Gn, by (6.12)
(yn, y′n) ∈ Wn. (6.15)

Since Wn∩L is dense in Wn and f is continuous in the second variable with the first vari-
able fixed, (6.13) and (6.14) are still valid when (yn, y′n) is replaced by some (kn, k′n) ∈
Wn ∩ L. Thus we have

|f(xn, kn)− f(x′n, k′n)| > r/2 + 1/(3p) (6.16)
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and
|f(xn, kn)− f(x′n, kn)| < b + 1/n. (6.17)

We let (kn, k′n) be β’s n-th move.
Finally, there exists an open set Un in X such that x′n ∈ Un ⊂ On and

diam f(Un, kn) < b + 1/n and diam f(Un, k′n) < b + 1/n. (6.18)

We then let Un = t(V0, V1, ..., Vn−1). This completes the definition of t. Since X is a
Baire space, t is not a winning strategy for β. Let V0, V1, ..., Vn, ... be a winning play for
α against β’s strategy t. Then there exists an element a ∈

⋂∞
n=0 Vn =

⋂∞
n=0 Un. Hence

by (6.16),

r/2 + 1/(3p) < |f(xn, kn)− f(x′n, k′n)| ≤ |f(xn, kn)− f(x′n, kn)|
+|f(x′n, kn)− f(a, kn)|+ |f(a, kn)− f(a, k′n)|+ |f(a, k′n)− f(x′n, k′n)|.

Using (6.17) and (6.18) twice, we have for each n ∈ N,

r/2 + 1/(3p) < 3b + 3/n + |f(a, kn)− f(a, k′n)|.

Since s is a winning strategy for the game G(∆, L,K), (kn, k′n) ∈ W for infinitely
many n’s. �

Proof of the Theorem 6.5 resumed: Let b = supk∈K osc(fk) and r = 6b. For each n ∈ N,
let

An = {x ∈ X : osc(f, (x, k)) < r + 1/n for each k ∈ K}.
We show by contradiction that An is dense in X for each n ∈ N. So assume that for some
p, Ap 6= X . Then, by Lemma 4, there exists a sequence (kn, k′n)n in L and a ∈ X such
that for each neighborhood W of ∆, (kn, k′n) ∈ W for infinitely many n’s and

r/2 + 1/(3p) < 3b + 3/n + |f(a, kn)− f(a, k′n)| for each n ∈ N.

Let
W = {(k, k′) ∈ K ×K : |f(a, k)− f(a, k′)| < 1/(12p)}.

W is open so we can pick an n > 18p with (kn, k′n) ∈ W . Then r/2 + 1/(3p) <
3b + 1/(6p) + 1/(12p) which implies r < 6b contrary to the definition of r. This proves
that An is dense in X for each n ∈ N. Since X is a Baire, D :=

⋂∞
n=1 An satisfies the

conditions of the theorem. �

Remark 6.6. In Lemma 4, if L = K × K, then the proof is a bit simpler, the condition
fx ∈ C(K) for each x ∈ X is not needed and the inequality (6.9) can be sharpened.
Indeed, under the hypothesis: L = K × K, the sequence (yn, y′n) can be taken to be
(kn, k′n). By so doing, inequality (6.9) can be replaced by

r/2 + 1/(3p) < 2b + 2/n + |f(a, kn)− f(a, k′n)|.

The following corollary is proved using Theorem 6.5 in the same way as Corollary 6.2
is derived from Theorem 6.1.

Corollary 6.7. Let X be a Baire space, let K be a G(∆, L)-α-favorable compact space
for some dense subset L of K ×K, and let F : X → C(K) be a map. Then there exists a
dense Gδ-subset D of X such that, for each x ∈ D, osc(F, x) ≤ 6 supk∈K osc(πk ◦ F ).
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Corollary 6.8. Let X be a Baire space, let K be a G(∆, L)-α-favorable compact space
for some dense subset L of K ×K, and let f : X ×K → R be a map. Then there exists
a dense Gδ-subset D of X such that, for each (y, k) ∈ D ×K we have

osc(f, (y, k)) ≤ 7 sup
x∈X

osc(fx) + 6 sup
k∈K

osc(fk).

Proof. Let c = supx∈X osc(fx) and b = supk∈K osc(fk). As usual we may assume that
c and b are finite. Let r > c. Then for each x ∈ X , there is a gx ∈ C(K) such that
‖fx − gx‖∞ < r/2 by Theorem 5.1. Define g : X × K → R by g(x, k) = gx(k).
Then |f(x, y) − g(x, k)| < r/2 for each (x, k) ∈ X × K. As remarked in the proof
of Corollary 6.3, the oscillations of f, fx, fk and g, gx, gk respectively differ by at most
r. By Theorem 6.5, there is a dense Gδ subset D of X such that osc(g, (x, k)) ≤
6 supk∈K osc(gk) ≤ 6(b+r) for each (x, k) ∈ D×K. Therefore for each (x, k) ∈ D×K,

osc(f, (x, k)) ≤ osc(g, (x, k)) + r ≤ 6(b + r) + r = 7r + 6b.

The corollary follows from this. �

The next two results are for the special case when L = K×K. They apply, for instance,
to the case when K is Corson compact (see below). Notice that the results are sharper than
for more general cases above.

Theorem 6.9. Let X be a Baire space and let K be a compact G(∆,K×K)-α-favorable
space. Let f : X ×K → R be a map. Then there exists a dense Gδ subset D of X such
that for each (y, k) ∈ D ×K,

osc(f, (y, k)) ≤ 2 sup
x∈X

osc(fx) + 4 sup
k∈K

osc(fk).

Proof. Let c = supx∈X osc(fx), b = supk∈K osc(fk) and r = 2c + 4b. For each n ∈ N,
let

An = {x ∈ X : osc(f, (x, k)) < r + 1/n for each k ∈ K}.
We show by contradiction that An is dense in X for each n ∈ N. So assume that for some
p, Ap 6= X . Then, by Remark 6.6 there exist a sequence (kn, k′n)n in K ×K and a ∈ X
such that for each neighborhood W of ∆, (kn, k′n) ∈ W for infinitely many n’s and

r/2 + 1/(3p) < 2b + 2/n + |f(a, kn)− f(a, k′n)| for each n ∈ N. (6.19)

For each x ∈ X , osc(fx) ≤ c so by Theorem 5.1 there exist gx ∈ C(X) such that
‖fx − gx‖∞ < c/2 + (1/18p). Now define the map g : X ×K → R by g(x, k) = gx(k).
Clearly

|f(x, k)− g(x, k)| < c/2 + 1/(18p) for (x, k) ∈ X ×K. (6.20)
In particular,

|f(a, kn)− f(a, k′n)| ≤ c + 1/(9p) + |g(a, kn)− g(a, k′n)|. (6.21)

Define
W = {(k, k′) ∈ K ×K : |g(a, k)− g(a, k′)| < 1/(9p)}.

W is open so we can pick an n > 18p with (kn, k′n) ∈ W . Then by (6.19) and (6.21)

r/2 + 1/(3p) < 2b + 1/(9p) + c + 2/(18p) + |g(a, kn)− g(a, k′n)| < c + 2b + 1/(3p)

which implies r < 2c + 4b contrary to the definition of r. This proves that An is dense
in X for each n ∈ N. Since X is a Baire, D :=

⋂∞
n=1 An satisfies the conditions of the

theorem. �
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The next corollary follows from the previous one in exactly same manner as Corol-
lary 6.3 does from Theorem 6.1

Corollary 6.10. Let X be a normal Baire space and let K be a compact G(∆,K ×K)-
α-favorable space. Let f : X ×K → R be a map. Then there exists a dense Gδ subset D
of X such that for each (y, k) ∈ D ×K,

osc(f, (y, k)) ≤ 2 sup
x∈X

osc(fx) + 3 sup
k∈K

osc(fk).

Let Γ be an arbitrary set and let

Σ(Γ) := {x ∈ [0, 1]Γ : {γ ∈ Γ : x(γ) 6= 0} is countable}.

A compact space K is said to be a Corson compact space if it is homeomorphic to a
subset of Σ(Γ), where Σ(Γ) is given the relativization of the product topology on [0, 1]Γ.
The space K is called a Valdivia compact space if it is homeomorphic to a compact subset
K ′ of [0, 1]Γ in such a way that K ′ ∩ Σ(Γ) is dense in K ′.

Bouziad [3] has shown that Corson compact spaces K are G(∆,K ×K)-α-favorable.
By modifying his proof a little, one can show each Valdivia compact space K is G(∆, L)-
α-favorable for a suitable dense subset L of K × K. For completeness, we present the
proof.

Lemma 5. Let K be a compact space, and let L be a dense subset of K × K. Assume
that there is an open covering U of K ×K \∆ such that

(i) the closure of each member of U is disjoint from ∆,
(ii) each point of L is contained in at most countable number of members of U .

Then K is G(∆, L)-α-favorable.

Proof. (Bouziad) For each (x, y) ∈ L, let {Un(x, y) : n ∈ N} be an enumeration
of all members of U containing (x, y). We allow (possibly) infinite repetitions and set
Un(x, y) = ∅ if (x, y) ∈ ∆ ∩ L. A strategy s for α in the game G(∆, L,K) is defined
as follows: Let s(∅) = K ×K and at the n-th stage, assuming β’s move so far has been
(x0, y0), (x1, y1), ..., (xn−1, yn−1) in L, we let

t((x0, y0), (x1, y1), ..., (xn−1, yn−1)) = (K ×K) \ ∪{Ui(xj , yj) : 0 ≤ i, j ≤ n− 1}.

We show that this is a wining strategy. Fix (x, y) is a cluster point of the sequence
(xn, yn)n. Suppose (x, y) 6∈ ∆. Then (x, y) ∈ U for some U ∈ U . It follows (xk, yk) ∈
U for some k and consequently, for some p, U = Up(xk, yk). Then for all n > max(k, p),
(xn, yn) 6∈ U . This contradicts that (x, y) is a cluster point of (xn, yn)n. So (x, y) ∈ ∆.
Hence if W is a neighborhood of ∆, then (xn, yn) ∈ W for infinitely many n’s. �

Corollary 6.11. Each Valdivia-compact space K is G(∆, D ×D)-α-favorable for some
dense subset D of K.

Proof. (Bouziad) Assume that K ⊂ [0, 1]Γ and that D = K ∩ Σ(Γ) is dense in K. For
each (γ, n) ∈ (Γ, N), let U(γ,n) = {(x, y) ∈ K × K : |x(γ) − y(γ)| > 1/n}. Then
it is easy to check that U = {U(γ,n) : (γ, n) ∈ (Γ, N)} satisfies conditions (i),(ii) of the
Lemma 5. �
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